iT邦幫忙

2025 iThome 鐵人賽

DAY 22
0

小明的試驗田三部曲

今天要學習量化交易的三個重要階段:回測、虛擬單、上線。這就像爸爸種新品種作物的流程一樣:先看歷史資料研究(回測),然後在小塊地試種(虛擬單),最後才大規模種植(上線)。這個循序漸進的過程確保我們不會因為貿然行動而遭受重大損失!

量化交易開發流程

完整開發流程圖

完整開發流程圖

回測 (Backtesting)

1. 回測的目的和重要性

回測就像查看農場的歷史收成記錄:

import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import matplotlib.pyplot as plt

class BacktestFramework:
    """回測框架"""
    
    def __init__(self, initial_capital=100000):
        self.initial_capital = initial_capital
        self.current_capital = initial_capital
        self.positions = {}
        self.trades = []
        self.equity_curve = []
        
    def load_historical_data(self, symbol, start_date, end_date):
        """載入歷史數據"""
        
        # 生成模擬歷史數據
        dates = pd.date_range(start_date, end_date, freq='1D')
        np.random.seed(42)
        
        # 模擬價格走勢
        returns = np.random.normal(0.001, 0.02, len(dates))
        prices = [50000]  # 起始價格
        
        for ret in returns[1:]:
            prices.append(prices[-1] * (1 + ret))
        
        data = pd.DataFrame({
            'timestamp': dates,
            'open': prices,
            'high': [p * (1 + abs(np.random.normal(0, 0.005))) for p in prices],
            'low': [p * (1 - abs(np.random.normal(0, 0.005))) for p in prices],
            'close': prices,
            'volume': np.random.uniform(1000, 5000, len(dates))
        })
        
        return data.set_index('timestamp')
    
    def calculate_indicators(self, data):
        """計算技術指標"""
        
        # 移動平均線
        data['sma_20'] = data['close'].rolling(20).mean()
        data['sma_50'] = data['close'].rolling(50).mean()
        
        # RSI
        delta = data['close'].diff()
        gain = (delta.where(delta > 0, 0)).rolling(14).mean()
        loss = (-delta.where(delta < 0, 0)).rolling(14).mean()
        rs = gain / loss
        data['rsi'] = 100 - (100 / (1 + rs))
        
        # 布林帶
        data['bb_middle'] = data['close'].rolling(20).mean()
        bb_std = data['close'].rolling(20).std()
        data['bb_upper'] = data['bb_middle'] + (bb_std * 2)
        data['bb_lower'] = data['bb_middle'] - (bb_std * 2)
        
        return data
    
    def generate_signals(self, data, strategy_name='ma_crossover'):
        """生成交易信號"""
        
        if strategy_name == 'ma_crossover':
            # 移動平均交叉策略
            data['signal'] = 0
            data['signal'] = np.where(
                data['sma_20'] > data['sma_50'], 1, 0
            )
            data['position'] = data['signal'].diff()
            
        elif strategy_name == 'rsi_reversal':
            # RSI反轉策略
            data['signal'] = 0
            data['signal'] = np.where(data['rsi'] < 30, 1, 
                                    np.where(data['rsi'] > 70, -1, 0))
            data['position'] = data['signal'].diff()
            
        return data
    
    def execute_backtest(self, data, commission=0.001):
        """執行回測"""
        
        for timestamp, row in data.iterrows():
            if pd.isna(row['position']) or row['position'] == 0:
                continue
            
            # 執行交易
            if row['position'] == 1:  # 買入信號
                self._execute_buy(timestamp, row['close'], commission)
            elif row['position'] == -1:  # 賣出信號
                self._execute_sell(timestamp, row['close'], commission)
            
            # 記錄權益曲線
            portfolio_value = self._calculate_portfolio_value(row['close'])
            self.equity_curve.append({
                'timestamp': timestamp,
                'portfolio_value': portfolio_value,
                'price': row['close']
            })
    
    def _execute_buy(self, timestamp, price, commission):
        """執行買入"""
        
        if 'BTC' not in self.positions:
            # 使用80%資金買入
            trade_amount = self.current_capital * 0.8
            quantity = trade_amount / price
            cost = quantity * price * (1 + commission)
            
            if cost <= self.current_capital:
                self.positions['BTC'] = quantity
                self.current_capital -= cost
                
                self.trades.append({
                    'timestamp': timestamp,
                    'type': 'buy',
                    'quantity': quantity,
                    'price': price,
                    'cost': cost,
                    'commission': cost * commission
                })
    
    def _execute_sell(self, timestamp, price, commission):
        """執行賣出"""
        
        if 'BTC' in self.positions:
            quantity = self.positions['BTC']
            revenue = quantity * price * (1 - commission)
            
            self.current_capital += revenue
            del self.positions['BTC']
            
            self.trades.append({
                'timestamp': timestamp,
                'type': 'sell',
                'quantity': quantity,
                'price': price,
                'revenue': revenue,
                'commission': revenue * commission
            })
    
    def _calculate_portfolio_value(self, current_price):
        """計算投資組合價值"""
        
        portfolio_value = self.current_capital
        
        if 'BTC' in self.positions:
            portfolio_value += self.positions['BTC'] * current_price
        
        return portfolio_value
    
    def generate_performance_report(self):
        """生成績效報告"""
        
        if not self.equity_curve:
            return {}
        
        equity_df = pd.DataFrame(self.equity_curve)
        equity_df['returns'] = equity_df['portfolio_value'].pct_change()
        
        # 計算績效指標
        total_return = (equity_df['portfolio_value'].iloc[-1] / self.initial_capital) - 1
        annual_return = (1 + total_return) ** (365 / len(equity_df)) - 1
        
        volatility = equity_df['returns'].std() * np.sqrt(365)
        sharpe_ratio = annual_return / volatility if volatility > 0 else 0
        
        # 最大回撤
        equity_df['peak'] = equity_df['portfolio_value'].expanding().max()
        equity_df['drawdown'] = (equity_df['portfolio_value'] - equity_df['peak']) / equity_df['peak']
        max_drawdown = equity_df['drawdown'].min()
        
        # 交易統計
        trades_df = pd.DataFrame(self.trades)
        if len(trades_df) > 0:
            buy_trades = trades_df[trades_df['type'] == 'buy']
            sell_trades = trades_df[trades_df['type'] == 'sell']
            total_trades = min(len(buy_trades), len(sell_trades))
            
            if total_trades > 0:
                # 計算每筆交易的盈虧
                trade_pnl = []
                for i in range(total_trades):
                    buy_cost = buy_trades.iloc[i]['cost']
                    sell_revenue = sell_trades.iloc[i]['revenue']
                    pnl = sell_revenue - buy_cost
                    trade_pnl.append(pnl)
                
                win_trades = [pnl for pnl in trade_pnl if pnl > 0]
                win_rate = len(win_trades) / len(trade_pnl) if trade_pnl else 0
                avg_win = np.mean(win_trades) if win_trades else 0
                avg_loss = np.mean([pnl for pnl in trade_pnl if pnl < 0]) if trade_pnl else 0
            else:
                total_trades = 0
                win_rate = 0
                avg_win = 0
                avg_loss = 0
        else:
            total_trades = 0
            win_rate = 0
            avg_win = 0
            avg_loss = 0
        
        return {
            'total_return': total_return,
            'annual_return': annual_return,
            'volatility': volatility,
            'sharpe_ratio': sharpe_ratio,
            'max_drawdown': max_drawdown,
            'total_trades': total_trades,
            'win_rate': win_rate,
            'avg_win': avg_win,
            'avg_loss': avg_loss,
            'profit_factor': abs(avg_win / avg_loss) if avg_loss != 0 else float('inf')
        }

# 執行回測範例
def run_backtest_example():
    """執行回測範例"""
    
    # 創建回測框架
    backtest = BacktestFramework(initial_capital=100000)
    
    # 載入歷史數據
    data = backtest.load_historical_data('BTC', '2023-01-01', '2024-01-01')
    
    # 計算技術指標
    data = backtest.calculate_indicators(data)
    
    # 生成交易信號
    data = backtest.generate_signals(data, 'ma_crossover')
    
    # 執行回測
    backtest.execute_backtest(data)
    
    # 生成績效報告
    performance = backtest.generate_performance_report()
    
    print("回測績效報告:")
    print(f"總收益率: {performance['total_return']:.2%}")
    print(f"年化收益率: {performance['annual_return']:.2%}")
    print(f"年化波動率: {performance['volatility']:.2%}")
    print(f"夏普比率: {performance['sharpe_ratio']:.2f}")
    print(f"最大回撤: {performance['max_drawdown']:.2%}")
    print(f"總交易次數: {performance['total_trades']}")
    print(f"勝率: {performance['win_rate']:.2%}")
    print(f"盈虧比: {performance['profit_factor']:.2f}")
    
    return backtest, performance

# 執行回測
backtest_result, performance_metrics = run_backtest_example()

2. 回測常見陷阱

回測常見陷阱

虛擬單 (Paper Trading)

1. 虛擬交易系統設計

class PaperTradingEngine:
    """虛擬交易引擎"""
    
    def __init__(self, initial_balance=100000):
        self.balance = initial_balance
        self.positions = {}
        self.orders = {}
        self.trade_history = []
        self.is_running = False
        
    async def start_paper_trading(self, strategy, market_data_feed):
        """開始虛擬交易"""
        
        self.is_running = True
        print("🚀 虛擬交易系統啟動")
        
        while self.is_running:
            try:
                # 獲取實時市場數據
                market_data = await market_data_feed.get_latest_data()
                
                # 策略生成信號
                signals = strategy.generate_signals(market_data)
                
                # 執行虛擬交易
                for signal in signals:
                    await self._execute_paper_order(signal, market_data)
                
                # 更新投資組合
                await self._update_portfolio(market_data)
                
                # 記錄狀態
                await self._log_status()
                
                # 等待下個週期
                await asyncio.sleep(1)
                
            except Exception as e:
                print(f"❌ 虛擬交易錯誤: {e}")
                await asyncio.sleep(5)
    
    async def _execute_paper_order(self, signal, market_data):
        """執行虛擬訂單"""
        
        symbol = signal['symbol']
        side = signal['side']
        size = signal['size']
        
        # 獲取當前價格
        current_price = market_data[symbol]['price']
        
        # 模擬滑價
        slippage = self._calculate_slippage(symbol, size, side)
        execution_price = current_price * (1 + slippage)
        
        # 模擬手續費
        commission = size * execution_price * 0.001
        
        # 執行交易
        if side == 'buy':
            required_capital = size * execution_price + commission
            if required_capital <= self.balance:
                self.balance -= required_capital
                self.positions[symbol] = self.positions.get(symbol, 0) + size
                
                trade_record = {
                    'timestamp': datetime.now(),
                    'symbol': symbol,
                    'side': side,
                    'size': size,
                    'price': execution_price,
                    'commission': commission,
                    'slippage': slippage,
                    'status': 'filled'
                }
                
                self.trade_history.append(trade_record)
                print(f"📈 虛擬買入: {size} {symbol} @ ${execution_price:.2f}")
            else:
                print(f"❌ 餘額不足,無法買入 {symbol}")
        
        elif side == 'sell':
            if symbol in self.positions and self.positions[symbol] >= size:
                revenue = size * execution_price - commission
                self.balance += revenue
                self.positions[symbol] -= size
                
                if self.positions[symbol] == 0:
                    del self.positions[symbol]
                
                trade_record = {
                    'timestamp': datetime.now(),
                    'symbol': symbol,
                    'side': side,
                    'size': size,
                    'price': execution_price,
                    'commission': commission,
                    'slippage': slippage,
                    'status': 'filled'
                }
                
                self.trade_history.append(trade_record)
                print(f"📉 虛擬賣出: {size} {symbol} @ ${execution_price:.2f}")
            else:
                print(f"❌ 持倉不足,無法賣出 {symbol}")
    
    def _calculate_slippage(self, symbol, size, side):
        """計算滑價"""
        
        # 簡化的滑價模型
        base_slippage = 0.0001  # 0.01% 基礎滑價
        size_impact = size * 0.000001  # 根據訂單大小調整
        
        slippage = base_slippage + size_impact
        
        # 買入時滑價為正,賣出時為負
        return slippage if side == 'buy' else -slippage
    
    async def _update_portfolio(self, market_data):
        """更新投資組合價值"""
        
        total_value = self.balance
        
        for symbol, quantity in self.positions.items():
            if symbol in market_data:
                current_price = market_data[symbol]['price']
                position_value = quantity * current_price
                total_value += position_value
        
        return total_value
    
    async def _log_status(self):
        """記錄狀態"""
        
        # 每小時記錄一次詳細狀態
        current_time = datetime.now()
        if current_time.minute == 0:
            portfolio_value = await self._update_portfolio({})
            print(f"💰 投資組合價值: ${portfolio_value:.2f}")
            print(f"💵 現金餘額: ${self.balance:.2f}")
            if self.positions:
                print(f"📊 持倉: {self.positions}")

class PaperTradingStrategy:
    """虛擬交易策略範例"""
    
    def __init__(self):
        self.last_signals = {}
        
    def generate_signals(self, market_data):
        """生成交易信號"""
        
        signals = []
        
        for symbol, data in market_data.items():
            # 簡單的動量策略
            current_price = data['price']
            
            # 假設有歷史價格資料
            if 'price_history' in data:
                price_history = data['price_history']
                if len(price_history) >= 20:
                    sma_20 = sum(price_history[-20:]) / 20
                    
                    # 價格突破20日均線
                    if current_price > sma_20 * 1.02:  # 突破2%
                        signals.append({
                            'symbol': symbol,
                            'side': 'buy',
                            'size': 0.1,
                            'strategy': 'momentum_breakout'
                        })
                    elif current_price < sma_20 * 0.98:  # 跌破2%
                        signals.append({
                            'symbol': symbol,
                            'side': 'sell',
                            'size': 0.1,
                            'strategy': 'momentum_breakdown'
                        })
        
        return signals

# 虛擬交易範例
async def run_paper_trading_example():
    """運行虛擬交易範例"""
    
    # 創建虛擬交易引擎
    paper_engine = PaperTradingEngine(initial_balance=100000)
    
    # 創建策略
    strategy = PaperTradingStrategy()
    
    # 模擬市場數據源
    class MockMarketDataFeed:
        async def get_latest_data(self):
            # 模擬實時數據
            return {
                'BTCUSDT': {
                    'price': 50000 + np.random.normal(0, 500),
                    'volume': 1000,
                    'price_history': [49000 + i * 10 for i in range(25)]
                }
            }
    
    market_feed = MockMarketDataFeed()
    
    # 運行虛擬交易(這裡只運行幾個週期作為演示)
    print("開始虛擬交易演示...")
    
    for i in range(5):
        market_data = await market_feed.get_latest_data()
        signals = strategy.generate_signals(market_data)
        
        for signal in signals:
            await paper_engine._execute_paper_order(signal, market_data)
        
        portfolio_value = await paper_engine._update_portfolio(market_data)
        print(f"週期 {i+1}: 投資組合價值 ${portfolio_value:.2f}")
        
        await asyncio.sleep(0.1)  # 模擬時間間隔

# 如果在異步環境中運行
# await run_paper_trading_example()

2. 虛擬交易與實盤差異分析

class PaperVsLiveTradingAnalyzer:
    """虛擬交易與實盤交易差異分析"""
    
    def __init__(self):
        self.differences = {
            'execution': {
                'slippage': {
                    'paper': '模擬滑價,可能過於樂觀',
                    'live': '真實滑價,特別是大單或低流動性時'
                },
                'fill_rate': {
                    'paper': '100%成交,無部分成交',
                    'live': '可能部分成交或完全不成交'
                },
                'latency': {
                    'paper': '無網路延遲',
                    'live': '網路延遲影響執行價格'
                }
            },
            
            'psychological': {
                'pressure': {
                    'paper': '無真實資金壓力',
                    'live': '真實資金的心理壓力'
                },
                'discipline': {
                    'paper': '容易遵守規則',
                    'live': '情緒影響決策執行'
                },
                'risk_tolerance': {
                    'paper': '風險承受度較高',
                    'live': '真實損失時風險厭惡增加'
                }
            },
            
            'market_impact': {
                'order_book': {
                    'paper': '不影響市場',
                    'live': '大單可能影響價格'
                },
                'timing': {
                    'paper': '完美時機執行',
                    'live': '交易所維護、網路問題等'
                }
            }
        }
    
    def generate_transition_plan(self):
        """生成從虛擬到實盤的過渡計劃"""
        
        plan = {
            'phase_1': {
                'duration': '2-4週',
                'goal': '驗證策略邏輯',
                'actions': [
                    '在虛擬環境中運行策略',
                    '記錄所有交易決策',
                    '分析策略表現',
                    '優化參數設定'
                ],
                'success_criteria': [
                    '正收益率',
                    '合理的夏普比率',
                    '可控的最大回撤'
                ]
            },
            
            'phase_2': {
                'duration': '1-2週',
                'goal': '小額實盤驗證',
                'actions': [
                    '使用最小金額實盤交易',
                    '比較虛擬與實盤結果',
                    '記錄心理變化',
                    '調整執行參數'
                ],
                'success_criteria': [
                    '實盤表現接近虛擬交易',
                    '能夠控制情緒',
                    '嚴格執行策略'
                ]
            },
            
            'phase_3': {
                'duration': '4-8週',
                'goal': '逐步增加資金',
                'actions': [
                    '每週評估表現',
                    '逐步增加交易規模',
                    '持續優化策略',
                    '建立風控機制'
                ],
                'success_criteria': [
                    '穩定的正收益',
                    '控制回撤在可接受範圍',
                    '建立交易信心'
                ]
            },
            
            'phase_4': {
                'duration': '持續',
                'goal': '正式運營',
                'actions': [
                    '使用目標資金規模',
                    '持續監控和優化',
                    '定期回顧和調整',
                    '風險管理機制完善'
                ],
                'success_criteria': [
                    '達到預期收益目標',
                    '風險控制有效',
                    '策略持續有效'
                ]
            }
        }
        
        return plan

analyzer = PaperVsLiveTradingAnalyzer()
transition_plan = analyzer.generate_transition_plan()

print("從虛擬交易到實盤交易的過渡計劃:")
for phase, details in transition_plan.items():
    print(f"\n{phase.upper()}:")
    print(f"  期間: {details['duration']}")
    print(f"  目標: {details['goal']}")
    print(f"  行動:")
    for action in details['actions']:
        print(f"    • {action}")
    print(f"  成功標準:")
    for criteria in details['success_criteria']:
        print(f"    ✓ {criteria}")

正式上線 (Going Live)

1. 上線前檢查清單

class GoLiveChecklist:
    """上線檢查清單"""
    
    def __init__(self):
        self.checklist = {
            'strategy_validation': [
                '回測結果滿意(正收益、合理回撤)',
                '虛擬交易表現良好(至少4週)',
                '小額實盤測試成功',
                '策略邏輯經過同行評議',
                '參數設定經過優化'
            ],
            
            'technical_infrastructure': [
                '交易系統穩定運行',
                'API連接穩定可靠',
                '備用系統準備就緒',
                '監控系統完善',
                '日誌記錄完整'
            ],
            
            'risk_management': [
                '風險控制參數設定',
                '止損機制完善',
                '最大回撤限制',
                '倉位大小控制',
                '緊急停止機制'
            ],
            
            'operational_readiness': [
                '交易資金準備充足',
                '團隊角色分工明確',
                '應急預案制定完成',
                '監控值班安排',
                '定期評估機制'
            ],
            
            'compliance_legal': [
                '合規要求確認',
                '稅務處理準備',
                '監管報告機制',
                '資金來源合法',
                '風險披露完整'
            ]
        }
    
    def evaluate_readiness(self, completed_items):
        """評估上線準備度"""
        
        total_items = sum(len(items) for items in self.checklist.values())
        completed_count = len(completed_items)
        readiness_score = completed_count / total_items
        
        if readiness_score >= 0.9:
            recommendation = "準備就緒,可以上線"
            risk_level = "低"
        elif readiness_score >= 0.8:
            recommendation = "基本準備就緒,建議補充剩餘項目"
            risk_level = "中低"
        elif readiness_score >= 0.7:
            recommendation = "需要完成更多準備工作"
            risk_level = "中"
        else:
            recommendation = "準備不足,不建議上線"
            risk_level = "高"
        
        return {
            'readiness_score': readiness_score,
            'recommendation': recommendation,
            'risk_level': risk_level,
            'completed_items': completed_count,
            'total_items': total_items
        }

# 使用檢查清單
checklist = GoLiveChecklist()

# 模擬已完成的項目
completed_items = [
    '回測結果滿意(正收益、合理回撤)',
    '虛擬交易表現良好(至少4週)',
    '交易系統穩定運行',
    'API連接穩定可靠',
    '風險控制參數設定',
    '止損機制完善',
    '交易資金準備充足'
]

evaluation = checklist.evaluate_readiness(completed_items)
print(f"上線準備度評估:")
print(f"完成度: {evaluation['readiness_score']:.1%}")
print(f"建議: {evaluation['recommendation']}")
print(f"風險等級: {evaluation['risk_level']}")

2. 上線監控系統

class LiveTradingMonitor:
    """實盤交易監控系統"""
    
    def __init__(self, telegram_notifier=None):
        self.telegram_notifier = telegram_notifier
        self.alerts = []
        self.performance_metrics = {}
        
    async def monitor_trading_performance(self, trading_engine):
        """監控交易表現"""
        
        while True:
            try:
                # 獲取當前表現
                current_metrics = await self._calculate_metrics(trading_engine)
                
                # 檢查異常情況
                alerts = self._check_alerts(current_metrics)
                
                # 發送警告
                for alert in alerts:
                    await self._send_alert(alert)
                
                # 記錄表現
                self.performance_metrics = current_metrics
                
                # 等待下次檢查
                await asyncio.sleep(300)  # 5分鐘檢查一次
                
            except Exception as e:
                await self._send_alert({
                    'type': 'system_error',
                    'message': f'監控系統錯誤: {e}',
                    'severity': 'high'
                })
                await asyncio.sleep(60)
    
    async def _calculate_metrics(self, trading_engine):
        """計算關鍵指標"""
        
        portfolio_value = await trading_engine.get_portfolio_value()
        daily_pnl = await trading_engine.get_daily_pnl()
        open_positions = await trading_engine.get_open_positions()
        
        return {
            'portfolio_value': portfolio_value,
            'daily_pnl': daily_pnl,
            'open_positions_count': len(open_positions),
            'total_exposure': sum(pos['value'] for pos in open_positions),
            'timestamp': datetime.now()
        }
    
    def _check_alerts(self, metrics):
        """檢查警告條件"""
        
        alerts = []
        
        # 檢查日損失
        if metrics['daily_pnl'] < -5000:  # 日損失超過5000
            alerts.append({
                'type': 'high_daily_loss',
                'message': f'日損失過大: ${metrics["daily_pnl"]:.2f}',
                'severity': 'high'
            })
        
        # 檢查持倉集中度
        if metrics['open_positions_count'] > 10:
            alerts.append({
                'type': 'high_position_count',
                'message': f'持倉數量過多: {metrics["open_positions_count"]}',
                'severity': 'medium'
            })
        
        # 檢查總敞口
        max_exposure = 50000  # 最大敞口5萬
        if metrics['total_exposure'] > max_exposure:
            alerts.append({
                'type': 'high_exposure',
                'message': f'總敞口過大: ${metrics["total_exposure"]:.2f}',
                'severity': 'high'
            })
        
        return alerts
    
    async def _send_alert(self, alert):
        """發送警告"""
        
        self.alerts.append(alert)
        
        if self.telegram_notifier:
            message = f"🚨 {alert['severity'].upper()} ALERT\n"
            message += f"類型: {alert['type']}\n"
            message += f"訊息: {alert['message']}\n"
            message += f"時間: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
            
            await self.telegram_notifier.send_message(message)
        
        print(f"⚠️ ALERT: {alert['message']}")

# 上線監控範例
async def setup_live_monitoring():
    """設置實盤監控"""
    
    monitor = LiveTradingMonitor()
    
    # 假設有交易引擎
    class MockTradingEngine:
        async def get_portfolio_value(self):
            return 98500  # 模擬投資組合價值
            
        async def get_daily_pnl(self):
            return -1500  # 模擬日損益
            
        async def get_open_positions(self):
            return [
                {'symbol': 'BTCUSDT', 'value': 10000},
                {'symbol': 'ETHUSDT', 'value': 5000}
            ]
    
    trading_engine = MockTradingEngine()
    
    # 運行監控(演示版本)
    metrics = await monitor._calculate_metrics(trading_engine)
    alerts = monitor._check_alerts(metrics)
    
    print("監控指標:")
    for key, value in metrics.items():
        if key != 'timestamp':
            print(f"  {key}: {value}")
    
    if alerts:
        print("\n發現警告:")
        for alert in alerts:
            print(f"  {alert['severity']}: {alert['message']}")
    else:
        print("\n✅ 系統狀態正常")

# 運行監控演示
# await setup_live_monitoring()

小結

今天我們學習了量化交易從想法到實現的完整流程,就像農夫從試驗田到大規模種植的過程。重要概念包括:

回測階段:

  • 使用歷史數據驗證策略
  • 避免常見的回測陷阱
  • 計算關鍵績效指標
  • 參數優化和策略調整

虛擬交易階段:

  • 使用實時數據模擬交易
  • 體驗接近真實的交易環境
  • 發現實際執行中的問題
  • 建立交易心理素質

正式上線階段:

  • 完整的上線檢查清單
  • 小額資金開始實盤
  • 建立監控和警告系統
  • 持續優化和風險控制

關鍵成功因素:

  • 循序漸進,不急於求成
  • 嚴格的風險管理制度
  • 持續的監控和優化
  • 良好的心理素質培養

記住爸爸說過的話:「種田要先在小塊地試驗,成功了再擴大規模」。量化交易也是如此,每個階段都有其重要作用,不可跳躍!

明天我們將深入學習期現套利策略的具體實作,這是量化交易中相對穩健的策略之一。


下一篇:Day 23 - 範例期現套利策略


上一篇
Day 21: 合約中的槓桿與現金費率
下一篇
Day 23: 範例期現套利策略
系列文
小資族的量化交易 10123
圖片
  熱門推薦
圖片
{{ item.channelVendor }} | {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言